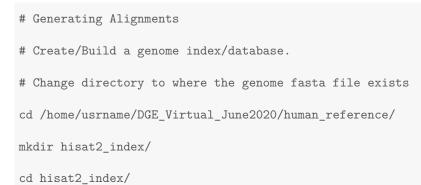

DIFFERENTIAL GENE EXPRESSION ANALYSIS MODULE

ALIGN READS TO A GENOME


Where do I belong on the genome?

STEP1: Alignments - Find a location for the reads on the genome

I found a spot. What is the biological context?

GENERATE ALIGNMENTS USING HISAT2 (You will need raw reads (fastq) as input and your genome fasta file as input


```
source activate bio
# HISAT2 Aligner
# To index a reference genome
# PLEASE DO NOT RUN THE FOLLOWING COMMAND
hisat2-build --help
hisat2-build ../GRCh38.p12.genome.fa GRCh38.p12.genome
# GRCh38.p12.genome.fa -> Reference Sequence
# GRCh38.p12.genome -> Index files are created with this base name
# The above command is a time and compute limiting step (for human genome reference it
# took approximatley 72 minutes) and hence you will use the genome index files that have
# been created already. Remember if you have your own dataset with another version of human
# genome or any other organism, you must run this step before kick starting the alignments in the next command.
# In the following steps we will use a small subset of input reads to
# demonstrate the process of generating alignments.
# We have created a folder that has only first 100,000 sequence reads for 12 samples
cd /home/usrname/DGE_Virtual_June2020/
mkdir subset_input_reads/
cd subset_input_reads/
cp /home/asundara/DGE_Virtual_May2020/subset_input_reads/* ./
cd ../
mkdir hisat2_alignments_subset/
cd /home/usrname/DGE_Virtual_May2020/subset_input_reads/
#Start a screen
screen -S <screen_Name>
source activate bio
#For single-end reads
#To run one sample at a time
hisat2 --help
# The following command takes approximately 6 seconds to run to completion (this may vary)
hisat2 -x /home/asundara/DGE_Virtual_May2020/human_reference/hisat2_index/GRCh38.p12.genome \
-U 2S1Flag-p5-2_lib_idx5_ACAGTG_OMM.subset.fq.gz \
--threads 4 \setminus
-S /home/usrname/DGE_Virtual_May2020/hisat2_alignments_subset/2S1Flag-p5-2_lib_idx5_ACAGTG_OMM.sam
# -x:index filename prefix
# -p: threads
```

-U: unpaired # -S: SAM output #The backslashes are just to escape the enter and continue a new line #To run multiple samples at once using for loop on the command line for file in *.fq.gz; do hisat2 \ -x /home/asundara/DGE_Virtual_May2020/human_reference/hisat2_index/GRCh38.p12.genome \ -U \${file} \ --threads 4 \ --s /home/usrname/DGE_Virtual_May2020/hisat2_alignments_subset/\${file}.sam; done #Detach from screen Cntrl ^a^d

ALIGNEMNTS FROM HISAT2 ARE REPRESENTED IN SAM (SEQUENCE ALIGNMENT MAP) FORMAT

SAM ONLINE RESOURCES

https://samtools.github.io/hts-specs/SAMv1.pdf

http://www.htslib.org/doc/sam.html

2S1Flag-p5-2_lib_idx5_ACAGTG_OMM.subset.sam

100000

https://en.wikipedia.org/wiki/SAM_(file_format)

ALIGNMENT METRICS

Some alignment tools (HISAT for example) will print alignment metrics after generating alignments. However these metrics will not be available as a result of other alignment tools. Hence, it is useful to know the following one liners to grab information on important metrics from SAM files.

cd /home/usrname/DGE_Virtual_May2020/hisat2_alignments_subset/
ls -ltr
USE RENAME COMMAND TO MODIFY FILE NAMES
rename <FROM> <TO> <FILES-TO-RENAME>
rename .subset.fq.gz.sam .subset.sam *.subset.fq.gz.sam
Total Reads from SAM file (the following command will cat the file and grab (grep) everything
that does not (-v) begin (^) with "@". This command is combined to the next command using | where you
use awk to just look at first column (\$1) | count lines (wc -l) of unique (uniq) instances)
cat 2S1Flag-p5-2_lib_idx5_ACAGTG_OMM.subset.sam | grep -v '^@' | awk '{print \$1}' | uniq | wc -l
100000
#To run multiple samples at once using for loop on the command line
for file in *.sam; do echo \${file}; cat \${file} | grep -v '^@' | awk '{print \$1}'| uniq | wc -l; done

2S1Flag-p6-3_lib_idx4_TGACCA_OMM.subset.sam 100000 2S1-Flag-p7-2 lib idx2 CGATGT OMM.subset.sam 100000 759_7-p5-2_lib_idx6_GCCAAT_OMM.subset.sam 100000 759_7-p6-1-1_lib_idx12_CTTGTA_OMM.subset.sam 100000 759_7-p6-2-2_lib_idx7_CAGATC_OMM.subset.sam 100000 pCDNA_p6-3_lib_idx5_ACAGTG_OMM.subset.sam 100000 pCDNA_p7-2_lib_idx4_TGACCA_OMM.subset.sam 100000 pCDNA p8-3 lib idx2 CGATGT OMM.subset.sam 100000 Scram_1-3_lib_idx6_GCCAAT_OMM.subset.sam 100000 Scram_1_p3-1_lib_idx12_CTTGTA_OMM.subset.sam 100000 Scram_1_p3-3_lib_idx7_CAGATC_OMM.subset.sam 100000 # Total number uniquely aligning reads (the following command will cat the file and grab (grep) everything # that does not (-v) begin (^) with "@". This command is combined to the next command using | where you # use awk to check if column 3 is not equal to * (\$3 != "*") and print the first # column (print \$1) | count (uniq -c) the number times every ID occurs | and only do a # word count (wc -1) of those IDs that have one in the first column (\$1==1))cat 2S1Flag-p5-2_lib_idx5_ACAGTG_OMM.subset.sam | grep -v '^@' | awk '{ if (\$3 != "*") print \$1}' |\ uniq -c | awk '{ if (\$1 == 1) print \$0}' | wc -l 77828 #To run multiple samples at once using for loop on the command line for file in *.sam; do echo \${file}; cat \${file} | grep -v '^@' | awk '{ if (\$3 != "*") print \$0}' \ | awk '{print \$1}' | uniq -c | awk '{print \$1 "\t" \$2}' | awk '{ if (\$1 == 1) print \$0}' | wc -1; done 2S1Flag-p5-2_lib_idx5_ACAGTG_OMM.subset.sam 77828 2S1Flag-p6-3_lib_idx4_TGACCA_OMM.subset.sam 77527 2S1-Flag-p7-2_lib_idx2_CGATGT_OMM.subset.sam 77476 759_7-p5-2_lib_idx6_GCCAAT_OMM.subset.sam 80639 759_7-p6-1-1_lib_idx12_CTTGTA_OMM.subset.sam 80815 759 7-p6-2-2 lib idx7 CAGATC OMM.subset.sam 80841 pCDNA_p6-3_lib_idx5_ACAGTG_OMM.subset.sam 78340 pCDNA_p7-2_lib_idx4_TGACCA_OMM.subset.sam 77782 pCDNA_p8-3_lib_idx2_CGATGT_OMM.subset.sam 78305 Scram_1-3_lib_idx6_GCCAAT_OMM.subset.sam 80464 Scram_1_p3-1_lib_idx12_CTTGTA_OMM.subset.sam

80541 Scram_1_p3-3_lib_idx7_CAGATC_OMM.subset.sam 80773

Since you will need the complete alignment files (sam) for the next step, please copy over the files from instrctors working directory.

#In the following four commands you will copy alignment output files(sam) from instructor (asundara) working directory to a location in your workspace cd /home/usrname/DGE_Virtual_June2020/ mkdir hisat2_alignments cd hisat2_alignments cp /home/asundara/DGE_Virtual_June2020/hisat2_alignments/*.sam . #DO THE FOLLOWING AS HOMEWORK cd /home/usrname/DGE_Virtual_June2020/ mkdir hisat2_alignments_practice cd raw_reads/ #Start a screen screen -S <screen_Name> source activate bio #For single-end reads #To run one sample hisat2 --help # The following command takes approximately 6 seconds to run to completion hisat2 -x /home/asundara/DGE_Virtual_June2020/human_reference/hisat2_index/GRCh38.p12.genome \ -U 2S1Flag-p5-2_lib_idx5_ACAGTG_OMM.fq.gz \ --threads $4 \setminus$ -S /home/usrname/DGE_Virtual_May2020/hisat2_alignments_practice/2S1Flag-p5-2_lib_idx5_ACAGTG_OMM.sam # -x:index filename prefix # -p: threads # -U: unpaired # -S: SAM output #The backslashes are just to escape the enter and continue a new line #To run multiple samples at once using for loop on the command line

for file in *.fq.gz; do hisat2 \

```
-x /home/asundara/DGE_Virtual_June2020/human_reference/hisat2_index/GRCh38.p12.genome \
-U ${file} \
--threads 4 \
-S /home/usrname/DGE_Virtual_June2020/hisat2_alignments_practice/${file}.sam; done
#Detach from screen
```

Cntrl ^a^d

STEP 2: GENERATE ALIGNMENT METRICS

cd /home/usrname/DGE_Virtual_June2020/hisat2_alignments_practice/

#Start a screen

screen -S <screen_Name>

source activate bio

ls -ltr

USE RENAME COMMAND TO MODIFY FILE NAMES

rename <FROM> <TO> <FILES-TO-RENAME>

rename .fq.gz.sam .sam *.fq.gz.sam

Total Reads from SAM file

cat 2S1Flag-p5-2_lib_idx5_ACAGTG_OMM.sam | grep -v '^@' | awk '{print \$1}'| uniq | wc -1

for file in *.sam; do echo \${file}; cat \${file} | grep -v '^@' | awk '{print \$1}'| uniq | wc -l; done

Total number uniquely aligning reads

cat 2S1Flag-p5-2_lib_idx5_ACAGTG_OMM.sam | grep -v '^@' | awk '{ if (\$3 != "*") print \$0}' \
| awk '{print \$1}' | uniq -c | awk '{print \$1 "\t" \$2}' | awk '{ if (\$1 == 1) print \$0}' | wc -l

for file in *.sam; do echo \${file}; cat \${file} | grep -v '^@' | awk '{ if (\$3 != "*") print \$0}' \
| awk '{print \$1}' | uniq -c | awk '{print \$1 "\t" \$2}' | awk '{ if (\$1 == 1) print \$0}' | wc -1; done

STEP 3: COMPLETE THE FOLLOWING TABLE USING RESULTS FROM STEP 2 ABOVE

File Name	Total Number of Reads	Uniquely Aligning Reads	% Uniquely Aligning Reads
2S1Flag-p5-2_lib_idx5_ACAGTG_0MM.fq.gz			
2S1Flag-p6-3_lib_idx4_TGACCA_0MM.fq.gz			
2S1-Flag-p7-2_lib_idx2_CGATGT_0MM.fq.gz			
759_7-p5-2_lib_idx6_GCCAAT_0MM.fq.gz			
759_7-p6-1-1_lib_idx12_CTTGTA_0MM.fq.gz			
759_7-p6-2-2_lib_idx7_CAGATC_0MM.fq.gz			
pCDNA_p6-3_lib_idx5_ACAGTG_0MM.fq.gz			
pCDNA_p7-2_lib_idx4_TGACCA_0MM.fq.gz			
pCDNA_p8-3_lib_idx2_CGATGT_0MM.fq.gz			
Scram_1-3_lib_idx6_GCCAAT_0MM.fq.gz			
Scram_1_p3-1_lib_idx12_CTTGTA_0MM.fq.gz			
Scram_1_p3-3_lib_idx7_CAGATC_0MM.fq.gz			